Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Северодонецкий технологический институт (филиал)

Кафедра управления инновациями в промышленности

УТВЕРЖДАЮ: Врио. директора СТИ (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» Ю.В. Бородач (полиись) 2024 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Разработка систем автоматизации технологических процессов и производств на базе современных контроллеров»

По направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств»

профиль «Компьютерные и специализированные системы автоматизации производств»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Разработка систем автоматизации технологических процессов и производств на базе современных контроллеров» по направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств», профиль «Компьютерные и специализированные системы автоматизации производств» — 17 с.

Рабочая программа учебной дисциплины «Разработка систем автоматизации технологических процессов и производств на базе современных контроллеров» разработана в соответствии с ФГОС ВО, утвержденным приказом Министерства науки и высшего образования Российской Федерации от 09.08.2021 № 730 (с изменениями и дополнениями).

СОСТАВИТЕЛЬ: Доцент, к.п.н. Бойко Е.А.

Рабочая программа дисциплины утверждена на заседании кафедры управления инновациями в промышленности <u>« 02 » __09 ____</u> 2024 г., протокол № <u>1.</u>

И.о. заведующего кафедрой управления инновациями в пром	ышлен	ности му	Е.А. Бойко
Переутверждена: «»	20	_ г., протокол №	·

Рекомендована на заседании учебно-методической комиссии Северодонецкого технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля» <u>« 16 » 09 2024 г., протокол № 1.</u>

Председатель учебно-методической комиссии СТИ (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» И.В. Бородач

[©] Бойко Е.А., 2024 год

[©] СТИ (филиал) ФГБОУ ВО «ЛГУ им. В. Даля», 2024 год

Структура и содержание дисциплины

1. Цели освоения дисциплины

Целями освоения дисциплины «Разработка систем автоматизации технологических процессов и производств на базе современных контроллеров» являются:

изучение студентами принципов применения программируемых промышленных контроллеров, принципов и средств разработки программного обеспечения промышленных контроллеров для решения задач разработки эффективных систем автоматического и автоматизированного управления технологическими процессами;

удовлетворение потребностей общества в квалифицированных кадрах путем подготовки специалистов по проектированию, разработке и эксплуатации систем автоматизации производственных и технологических процессов изготовления продукции различного служебного назначения, управления ее жизненным циклом и качеством, контроля, диагностики и испытаний;

подготовка высококвалифицированных специалистов, способных решать задачи проектирования, изготовления, отладки, производственных испытаний, эксплуатации и научного исследования средств технологического оснащения автоматизации, управления, контроля и диагностирования основного и вспомогательного производств в области энергетики, их математического, программного, информационного и технического обеспечения;

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина относится к факультативной части ООП (ФТД). В процессе изучения дисциплины студенты приобретают навыки разработки программного обеспечения контроллеров для решения практических задач управления и навыки разработки систем автоматизации с применением современного оборудования и современных методов проектирования.

Для изучения дисциплины студенту необходимы знания в области следующих дисциплин: «Теория автоматического управления», «Электротехника и электроника», «Метрология и измерительная техника», «Информационные сети и телекоммуникации», «Микропроцессорная техника в системах управления», «Программирование и основы алгоритмизации». Для освоения дисциплины студент должен знать: принципы организации и построения микропроцессорных устройств и систем вычислительной техники, принципы организации промышленных сетей и протоколов связи. Студент должен владеть основами теории автоматического управления, уметь выполнять расчет замкнутых систем автоматического регулирования. Студент должен обладать навыками алгоритмизации и разработки программного обеспечения.

Материалы дисциплины должны использоваться в курсовом и дипломном проектировании.

3. Требования к результатам освоения содержания дисциплины

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен проводить	ПК-1	ПК-1.1. Знать принципы построения промышленных
анализ		контроллеров на уровне базовых понятий
технологических		ПК-1.2. Знать инструменты программирования и
процессов		языки программирования промышленных
механосборочного		контроллеров
производства с целью		ПК-1.3. Уметь проектировать системы
выявления операций,		автоматического и автоматизированного управления
подлежащих		на базе программируемых промышленных
автоматизации и		контроллеров, алгоритмизировать базовые задачи

механизации	теории автоматического управления
	ПК-1.4. Уметь разрабатывать программное
	обеспечение промышленных контроллеров с
	применением современных средств разработки и
	языков программирования, реализовывать алгоритмы
	управления на базе промышленных контроллеров
	ПК-1.5. Владеть методами алгоритмизации и
	программирования алгоритмов задач автоматического
	и автоматизированного управления на базе
	промышленных контроллеров
	ПК-1.6. Владеть современными системами и средами
	программирования промышленных контроллеров

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем	часов (зач. ед.)	
	Очная форма	Очно-заочная форма	Заочная форма
Общая учебная нагрузка (всего)	72	-	72
	(2 зач. ед.)		(2 зач. ед.)
Обязательная контактная работа (всего)	34	-	12
в том числе:			
Лекции	17	-	6
Семинарские занятия	1	-	-
Практические занятия	-	-	-
Лабораторные работы	17	-	6
Курсовая работа (курсовой проект)	-	-	_
Другие формы и методы организации	-	-	-
образовательного процесса (расчетно-графические			
работы, индивидуальные задания и т.п.)			
Самостоятельная работа студента (всего)	38	-	60
Форма аттестации	6 семестр	-	6 семестр
	зачет		зачет

4.2. Содержание разделов дисциплины

Тема 1. Архитектура промышленного контроллера. Организация ввода и вывода аналоговых и дискретных сигналов в системах автоматизации.

Общая организация программируемого промышленного контроллера (ПЛК). Работа центрального процессора ПЛК. Понятие цикла. Организация памяти ПЛК. Периферийные устройства ПЛК. Входы и выходы. Сетевые интерфейсы ПЛК. Типичные аналоговые сигналы и их характеристики. Стандартные сигналы. Параметры каналов аналогового ввода: разрешающая способность, периодичность преобразования, мультиплексированные входы, фильтрация. Защита и гальваническая развязка аналоговых входов. Стандартные аналоговые выходные сигналы. Функции аналоговых сигналов. Защита и гальваническая развязка аналоговых выходов. Стандартные дискретные сигналы, применяемые в промышленности. Защита и гальваническая развязка дискретных входов. Стандартные типы дискретных выходов. Усилительные и коммутационные устройства промышленных контроллеров и модулей. Ввод сигналов специальных типов. Число-импульсные и частотные сигналы и их применение в системах сбора данных. Пассивные и инициативные сигналы. Временные характеристики и требования к времени реакции.

Тема 2. Интеллектуальные модули в системах автоматизации. Распределенные системы автоматизации.

Назначение интеллектуальных модулей, преимущества и недостатки построения распределенных систем. Структурная организация интеллектуального модуля. Средства и протоколы сетевого взаимодействия. Выбор конфигурации распределенной системы. Стандарты передачи данных. Основные сведения о сетях передачи данных. Модель ISO OSI и сетевые протоколы различных уровней. Место сетевых протоколов в иерархии системы управления. Сетевые протоколы, реализуемые в ПЛК. Защита и безопасность промышленных сетей. Волоконно-оптические линии связи.

Тема 3. Человеко-машинный интерфейс систем автоматизации. Надежность систем автоматизации.

Простые средства управления и индикаторы. Предупредительная и аварийная сигнализация. Графические панели. Требования и нормы надежности. Расчет надежности систем с ПЛК. Резервирование. Автоматическая диагностика. Организация электропитания промышленных систем управления. Организация защитного заземления.

Тема 4. Автоматизация процессов в особых условиях. Многоуровневые системы автоматизации и управления на базе ПЛК.

Категории искро- и взрывобезопасности. Конструктивные исполнения оборудования автоматизации для работы в агрессивных и опасных средах. ПЛК в системах технологических защит. Требования и руководящие документы. Интерфейсы ПЛК в системах диспетчерского уровня. Обмен данными с ПЛК. Контроль работы ПЛК. ПЛК в SCADA-системе.

Тема 5. Оценка и выбор комплекса технических средств автоматизации. Типовые проекты систем автоматизации для объектов энергетики.

Технико-экономические аспекты выбора. Параметры, определяющие выбор структуры оценки оборудования. автоматизированной системы. Критерии Выбор оборудования. Проекты автоматизации котельных установок. Проекты автоматизации электростанций. Проекты автоматизации подстанций электроснабжения. Проекты систем контроля энергопотребления и учета энергоресурсов. Проекты систем автоматизации диагностики технологического оборудования.

Тема 6. Инструменты программирования ПЛК. Языки программирования ПЛК. Реализация управляющих алгоритмов на ПЛК.

Стандарт МЭК 61131. Языки программирования ПЛК. Инструменты программирования МЭК. Комплекс CoDeSys. Комплекс ISAGraf. Средства программирования и отладки ПЛК Siemens STEP7. Средства программирования контроллеров с операционной системой Windows CE (общие сведения). Языки программирования стандарта МЭК 61131. Диаграммы SFC. Список инструкций IL. Структурированный текст ST. Релейные диаграммы LD. Функциональные блоки FBD. Программирование контроллеров на языках С и ассемблера. Дистанционное управление. Программное логическое управление. Технологические защиты и блокировки. Замкнутый контур управления. ПИД-регулятор в дискретной форме. Реализация алгоритмов регулирования на ПЛК. Выбор настроек и параметров алгоритмов автоматического регулирования. Алгоритмы автоматической настройки регуляторов на объекте.

4.3. Лекции

No	Название темы	Объем часов			
п/п		Очная форма	Очно- заочная форма	Заочная форма	
	1 семестр				
1	Архитектура промышленного контроллера (ПЛК)	2	-	1	
2	Организация ввода и вывода аналоговых и дискретных сигналов в системах автоматизации	2	-	1	
3	Человеко-машинный интерфейс систем автоматизации	2	_	1	

4	Надежность систем автоматизации	3	-	1
5	Автоматизация процессов в особых условиях	4	-	1
6	Оценка и выбор комплекса технических средств	4	_	1
	автоматизации			1
Bcei	70	17	-	6

4.4. Лабораторные работы

No	Название темы		Объем часов		
п/п		Очная форма	Очно- заочная форма	Заочная форма	
	1 семестр				
1	Интеллектуальные модули в системах автоматизации	2	-	1	
2	Распределенные системы автоматизации	4	_	1	
3	Многоуровневые системы автоматизации и управления на базе ПЛК	4	-	1	
4	Инструменты программирования ПЛК	2	_	1	
5	Языки программирования ПЛК	2	-	1	
6	Реализация управляющих алгоритмов на ПЛК	3	-	1	
Всего		17	-	6	

4.5. Практические занятия не предусмотрены учебным планом

		Объем часов		
№ п/п	Название темы	Очная форма	Очно- заочная форма	Заочная форма
1				
2				
3				
4				
5				
Итого	:			

4.6. Самостоятельная работа студентов

			O	бъем час	ОВ
№ п/п	Название темы	Вид СРС	Очная	Очная	Очная
			форма	форма	форма
1	Архитектура	Проработка материала лекций			
	промышленного		4	-	8
	контроллера (ПЛК)				
2	Организация ввода и	Проработка материала лекций			
	вывода аналоговых и		4		8
	дискретных сигналов в		4	_	0
	системах автоматизации				
3	Человеко-машинный	Проработка материала лекций			
	интерфейс систем		4	-	8
	автоматизации				
4	Надежность систем	Проработка материала лекций	4		8
	автоматизации		4	_	O
5	Автоматизация процессов	Проработка материала лекций	4		8
	в особых условиях		4	-	O

автоматизашии			ļ
			l
технических средств	4	-	8

4.7. Курсовые работы/проекты по дисциплине не предполагаются учебным планом.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);

технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;

технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурнообразовательном пространстве университета идею создания равных возможностей для получения образования технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Используемые образовательные технологии и методы направлены на повышение качества подготовки путем развития у обучающихся способностей к самообразованию и нацелены на активизацию и реализацию личностного потенциала каждого студента.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. М.: Горячая линия-Телеком, 2009. 608 с.
- 2. Мишель Ж, Лоржо К., Эспьо Б. Программируемые контроллеры. М: «Машиностроение», 1986.
- 3. Петров И. В. Программируемые контроллеры- Стандартные языки и приемы прикладного проектирования / под ред. В. П. Дьяконова. М: СОЛОН-Пресс, 2004, 266 с.

4. Парр Э. Программируемые контроллеры : руководство для инженера / Э. Парр ; пер. 3-го англ. изд. — М. : БИНОМ. Лаборатория знаний, 2007. - 516 с.

б) дополнительная литература:

- 5. Елизаров И.А., Мяртемьянов Ю.Ф., Схирт-ладзе А.Г., Фролов С.В. Технические средства автоматизации. Программ-но-технические комплексы и контроллеры: Учебное пособие. М.: «Издательство Машиностроение-1», 2004. 180 с.
- 6. Деменков Н.П. Языки программирования промышленных контроллеров: Учебное пособие / Под ред. К.А. Пупкова. -М: Изд-во МГТУ им. Н.Э. Баумана, 2004. 172 с.
- 7. Курсовое и дипломное проектирование по автоматизации производственных процессов: Учеб. пособие для вузов по спец. «Автоматизация и комплексная механизация химикотехнологических процессов» / И. К. Петров, Д. П. Петелин, М. С. Тюльпанов, М. В. Козлов; Под ред. И. К. Петрова. М.: Высш. шк., 1986. 352 с.
- 8. Бергер Г. Автоматизация посредством STEP 7 с использованием STL и SCL и программируемых контроллеров SIMATIC S7-300/400. SIEMENS AG, 2001.
- 9. Бергер Г. Автоматизация посредством STEP 7 с использованием LAD и FBD и програмируемых контроллеров SIMATIC S7-300/400. SIEMENS AG, 2001.
- 10. Минаев И.Г., Самойленко В.В. Программируемые логические контроллеры. Практическое руководство для начинающего инженера. Учеб. пособие. Ставрополь: АГРУС, 2009. 100 с.

в) методические рекомендации: г) интернет-ресурсы:

Министерство науки и высшего образования РФ – https://minobrnauki.gov.ru/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» — http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы:

Электронно-библиотечная система «Консультант студента» — http://www.studentlibrary.ru/cgi-bin/mb4x

Научная электронная библиотека Elibrary – Режим доступа: URL: http://elibrary.ru/

Информационный ресурс библиотеки образовательной организации:

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

7. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Разработка систем автоматизации технологических процессов и производств на базе современных контроллеров» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место, оснащенное компьютером с доступом в Интернет.

1. Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
------------------------------	--	--------

Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	FirefoxMozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	MozillaThunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	FarManager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/
Среда программирования	CoDeSys	https://www.codesys.com/

- 2. Программируемый логический контроллер ПЛК-154 (лабораторный стенд)
- 3. Модули распределенного ввода-вывода ОВЕН (лабораторный стенд)
- 4. Программируемый логический контроллер WinCon (лабораторный стенд)
- 5. Модули распределенного ввода-вывода серии I7000 (лабораторный стенд)
- 6. Объект управления (лабораторный стенд)

8. Оценочные средства по дисциплине

Паспорт оценочных средств по учебной дисциплине

«Разработка систем автоматизации технологических процессов и производств на базе современных контроллеров»

Описание уровней сформированности и критериев оценивания компетенций на этапах их формирования в ходе изучения дисциплины

Этап	Код	Уровни	Критерии
	компетенции	сформированнос	оценивания компетенции
		ти компетенции	
35		Пороговый	Знать:
1 19	~ •		принципы построения промышленных
IPE	ий		контроллеров на уровне базовых понятий;
4a.	јап		инструменты программирования и языки
Начальный	рог		программирования промышленных
	ж пи		контроллеров
	эсобен проводить анализ технологических врочного производства с целью выявления подлежащих автоматизации и механизации	Базовый	Уметь:
	нес вле пиз		проектировать системы автоматического и
	Гит ыя хан		автоматизированного управления на базе
,_)) B) (Me)		программируемых промышленных
Основной	ХНС ЛБР		контроллеров, алгоритмизировать базовые
081	те; пи		задачи теории автоматического управления;
СН	из а с заг		разрабатывать программное обеспечение
0	нал тва		промышленных контроллеров с применением
	5 ан одс		современных средств разработки и языков
			программирования, реализовывать алгоритмы
	30д 20и 2 х		управления на базе промышленных
	рое піт	TD V	контроллеров
) <u>Z</u>	— н пј ого жа	Высокий	Владеть:
1 19	бен чно цле		методами алгоритмизации и
IPE	odo Tor		программирования алгоритмов задач
Te	Спс 2000 1		автоматического и автоматизированного
Заключительный	 ПК-1. Способен проводить анализ технологических процессов механосборочного производства с целью выявления операций, подлежащих автоматизации и механизации 		управления на базе промышленных
110	K- .		контроллеров;
ак	H Ä		современными системами и средами
S.			программирования промышленных
			контроллеров

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины

No	Код		Индикаторы	Voyano	Этапы
п/п	контрол-	Формулировка	достижений	Контролируемые темы учебной	формиро-
	ируемой ком-	контролируемой	компетенции (по	дисциплины,	вания
	петен-	компетенции	реализуемой	практики	(семестр
	ции		дисциплине)	практики	изучения)
1	ПК-1	Способен проводить	ПК-1.1. Знать	Архитектура	6
		анализ	принципы построения	промышленного	
		технологических	промышленных	контроллера.	
		процессов	контроллеров на уровне	Организация ввода	
		механосборочного	базовых понятий	и вывода	
		производства с	ПК-1.2. Знать	аналоговых и	
		целью выявления	инструменты	дискретных	
		операций,	программирования и	сигналов в	
		подлежащих	языки	системах	
		автоматизации и	программирования	автоматизации	
		механизации	промышленных	Интеллектуальные	6
			контроллеров	модули в системах	
			ПК-1.3. Уметь	автоматизации.	
			проектировать системы	Распределенные	
			автоматического и	системы	
			автоматизированного	автоматизации	
			управления на базе	Человеко-	6
			программируемых	машинный	
			промышленных	интерфейс систем	
			контроллеров,	автоматизации.	
			алгоритмизировать	Надежность систем	
			базовые задачи теории	автоматизации	
			автоматического	Автоматизация	6
			управления	процессов в особых	
			ПК-1.4. Уметь	условиях.	
			разрабатывать	Многоуровневые	
			программное	системы	
			обеспечение	автоматизации и	
			промышленных	управления на базе	
			контроллеров с	ПЛК	
			применением	Оценка и выбор	6
			современных средств	комплекса	
			разработки и языков	технических	
			программирования,	средств	
			реализовывать	автоматизации.	
			алгоритмы управления	Типовые проекты	
			на базе промышленных	систем	
			контроллеров	автоматизации для	
			ПК-1.5. Владеть	объектов	
			методами	энергетики	

	алгоритмизации и	Инструменты	6
	программирования	программирования	
	алгоритмов задач	ПЛК. Языки	
	автоматического и	программирования	
	автоматизированного	ПЛК. Реализация	
	управления на базе	управляющих	
	промышленных	алгоритмов на ПЛК	
	контроллеров		
	ПК-1.6. Владеть		
	современными		
	системами и средами		
	программирования		
	промышленных		
	контроллеров		

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/ п	Код контролируемо й компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов	Контроли -руемые темы учебной дисципли ны	Наименование оценочного средства
1	ПК-1. Способен проводить анализ технологически х процессов механосборочн ого производства с целью выявления операций, подлежащих автоматизации и механизации	ПК-1.1. Знать принципы построения промышленных контроллеров на уровне базовых понятий ПК-1.2. Знать инструменты программирования и языки программирования промышленных контроллеров ПК-1.3. Уметь проектировать системы автоматического и автоматизированного управления на базе программируемых	Знать: принципы построения промышленных контроллеров на уровне базовых понятий; инструменты программирования и языки программирования промышленных контроллеров. Уметь: проектировать системы автоматического и автоматизированно го управления на базе программируемых	Тема 1 Тема 2 Тема 3 Тема 4 Тема 5 Тема 6	разноуровневые контрольные работы и задания

промышленных промышленных контроллеров, контроллеров, алгоритмизировать алгоритмизировать базовые задачи базовые задачи теории теории автоматического автоматического управления управления; ПК-1.4. Уметь разрабатывать разрабатывать программное программное обеспечение обеспечение промышленных промышленных контроллеров с контроллеров с применением применением современных средств разработки современных средств разработки и языков и языков программирования, программирования реализовывать , реализовывать алгоритмы алгоритмы управления на базе управления на базе промышленных промышленных контроллеров контроллеров. ПК-1.5. Владеть Владеть: методами методами алгоритмизации и алгоритмизации и программирования программирования алгоритмов задач алгоритмов задач автоматического и автоматического и автоматизированного автоматизированно управления на базе го управления на базе промышленных контроллеров промышленных ПК-1.6. Владеть контроллеров; современными современными системами и средами системами и программирования средами промышленных программирования контроллеров промышленных контроллеров

1. Вопросы к контрольным работам

(пороговый уровень)

- 1. Организация резервирования в системах с ПЛК.
- 2. Протоколы промышленных сетей ПЛК.
- 3. Современные ПЛК Siemens.
- 4. Современные ПЛК с операционной системой Windows
- 5. Современные ПЛК для малой автоматизации.
- 6. Современные ПЛК для приложений теплоэнергетики.
- 7. Современные ПЛК для приложений электроэнергетики.
- 8. ПЛК в системах учета энергоносителей.
- 9. ПЛК в приложениях транспорта.
- 10. Современные системы управления движением (motion control).

- 11. Современные ПЛК в пищевой промышленности.
- 12. Современные интеллектуальные модули распределенных систем автоматизации и управления.
- 13. Методы повышения надежности АСУ ТП на базе ПЛК.
- 14. Современные интерфейсы ПЛК.
- 15. ПЛК на базе Intel x86-совместимых платформ.
- 16. Системы программирования ПЛК

Критерии и шкала оценивания по оценочному средству «контрольная работа»

Шкала оценива	я Критерий оценивания	
(интервал баллов)		
5	Контрольная работа выполнена на высоком уровне (правильные	
	ответы даны на 90 – 100% вопросов/задач)	
4	Контрольная работа выполнена на среднем уровне (правильные	
	ответы даны на 75 – 89% вопросов/задач)	
3	Контрольная работа выполнена на низком уровне (правильные	
ответы даны на 50 – 74% вопросов/задач)		
2	Контрольная работа выполнена на неудовлетворительном уровне	
	(правильные ответы даны менее чем на 50%)	

2. Вопросы для обсуждения (в виде индивидуальных заданий)

(базовый уровень)

- 1. Разработать проект в среде CoDeSys, реализующий управление аналоговым выходом ПЛК по заданной программе.
- 2. Разработать проект в среде CoDeSys, реализующий управление дискретным выходом ПЛК по заданной программе.
 - 3. Разработать проект в среде CoDeSys, реализующий опрос датчика температуры
- 4. Разработать проект в среде CoDeSys, реализующий управление дискретным выходом по состоянию 1-3 дискретных входов ПЛК. Алгоритм работы задается преподавателем.
- 5. Разработать проект в среде CoDeSys, реализующий опрос двух аналоговых датчиков с отображением результата на панели оператора.
- 6. Разработать проект в среде CoDeSys, реализующий опрос четырех дискретных входов ПЛК с отображением результата на панели оператора.
- 7. Разработать проект в среде CoDeSys, реализующий дистанционное управление аналоговым входом ПЛК с панели оператора.
- 8. Разработать проект в среде CoDeSys, реализующий дистанционное управление релейными выходами ПЛК с панели оператора.
- 9. Разработать проект в среде CoDeSys, реализующий релейный закон регулирования аналоговой величины (температуры) с возможностью ввода уставки с панели оператора.
- 10. Разработать проект в среде CoDeSys, реализующий опрос удаленного модуля ввода аналоговых сигналов.
- 11. Разработать проект в среде CoDeSys, реализующий опрос удаленного модуля ввода дискретных сигналов.
- 12. Разработать проект в среде CoDeSys, реализующий управление аналоговым выходом удаленного модуля вывода.
- 13. Разработать проект в среде CoDeSys, реализующий управление дискретными выходами удаленного модуля вывода.
- 14. Разработать проект в среде CoDeSys, реализующий опрос датчика аналоговых величин с протоколом DCON. Исходные данные задаются преподавателем.
 - 15. Разработать проект в среде CoDeSys, реализующий управление модулем NL4RTD.

- 16. Разработать проект в среде CoDeSys, реализующий систему стабилизации аналоговой величины (температуры) по ПИ или ПИД закону. Параметры объекта задаются преподавателем.
- 17. Разработать проект в среде CoDeSys, реализующий систему программного управления аналоговой величиной (температурой) с применением ПИ или ПИД закона регулирования на ПЛК. Параметры объекта задаются преподавателем.

Критерии и шкала оценивания по оценочному средству «разноуровневые задания и задачи»

Шкала оценивания	Критерий оценивания	
(интервал баллов)		
5	Обучающийся полностью и правильно выполнил задание. Показал отличные знания, умения и владения навыками применения их при решении задач в рамках усвоенного учебного материала. Работа оформлена аккуратно в соответствии с	
	предъявляемыми требованиями	
4	Обучающийся выполнил задание с небольшими неточностями. Показал хорошие знания, умения и владения навыками применения их при решении задач в рамках освоенного учебного материала. Есть недостатки в оформлении работы	
3	Обучающийся выполнил задание с существенными неточностями. Показал удовлетворительные знания, умения и владения навыками применения их при решении задач	
2	Обучающийся выполнил задание неправильно. При выполнении обучающийся продемонстрировал недостаточный уровень знаний, умений и владения ими при решении задач в рамках усвоенного учебного материала	

3. Оценочные средства для промежуточной аттестации (зачет)

- 1. Устройство программируемого промышленного контроллера (ПЛК).
- 2. Понятие цикла ПЛК.
- 3. Периферийные устройства ПЛК.
- 4. Входы и выходы ПЛК.
- 5. Сетевые интерфейсы ПЛК.
- 6. Аналоговые сигналы и их характеристики.
- 7. Стандартные аналоговые сигналы.
- 8. Параметры каналов аналогового ввода.
- 9. Функции аналоговых выходных сигналов в АСУ ТП.
- 10. Организация вывода аналоговых сигналов в АСУ ТП.
- 11. Стандартные дискретные сигналы, применяемые в промышленности.
- 12. Организация ввода дискретных сигналов в АСУ ТП.
- 13. Стандартные типы дискретных выходов.
- 14. Организация вывода дискретных сигналов в АСУ ТП.
- 15. Усилительные и коммутационные устройства промышленных контроллеров.
- 16. Число-импульсные и частотные сигналы и их применение в системах сбора данных.
- 17. Назначение интеллектуальных модулей в АСУ ТП.
- 19. Структурная организация интеллектуального модуля ввода-вывода.
- 20. Стандарты передачи данных в промышленных сетях АСУ ТП с ПЛК.
- 21. Сетевые протоколы, реализуемые в АСУ ТП с ПЛК.
- 22. Типовые структуры распределенных АСУ ТП на базе ПЛК.
- 23. Структура средств человеко-машинного интерфейса АСУ ТП.
- 24. Предупредительная и аварийная сигнализация.
- 25. Организация интерфейса оператора с применением графических панелей.

- 26. Требования и нормы надежности в системах с ПЛК.
- 27. Резервирование в системах с ПЛК.
- 28. Автоматическая диагностика оборудования АСУ ТП.
- 29. Организация электропитания промышленных систем управления.
- 30. Организация защитного заземления в промышленных системах управления.
- 31. Категории искро- и взрывобезопасности промышленного оборудования.
- 32. Защитные исполнения ПЛК.
- 33. ПЛК в системах технологических защит.
- 34. Обмен данными с ПЛК в SCADA системе.
- 35. Интерфейсы ПЛК в системах диспетчерского уровня.
- 36. Контроль работы ПЛК в системах диспетчерского уровня.
- 37. Параметры, определяющие выбор структуры автоматизированной системы.
- 38. Критерии оценки промышленных контроллеров.
- 39. Языки программирования ПЛК стандарта МЭК 61131.
- 40. Средства программирования ПЛК.
- 41. МЭК 61131. Диаграммы SFC.
- 42. МЭК 61131. Список инструкций IL.
- 43. МЭК 61131. Структурированный текст ST.
- 44. МЭК 61131. Релейные диаграммы LD.
- 45. МЭК 61131. Функциональные блоки FBD.
- 46. Дистанционное управление на базе ПЛК.
- 47. Программное логическое управление на базе ПЛК.
- 48. Технологические защиты и блокировки в системах ПЛК.
- 49. ПИД-регулятор в дискретной форме.
- 50. Реализация алгоритмов регулирования на ПЛК.
- 51. Проведение эксперимента на объекте под управлением ПЛК.
- 52. Алгоритмы автоматической настройки регуляторов на объекте.

Критерии и шкала оценивания к промежуточной аттестации «зачет»

V.	
Характеристика знания предмета и ответов	Зачеты
Студент глубоко и в полном объёме владеет программным материалом. Грамотно,	зачтено
исчерпывающе и логично его излагает в устной или письменной форме. При этом знает	
рекомендованную литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет умениями и навыками при	
выполнении практических задач	
Студент знает программный материал, грамотно и по сути излагает его в устной или	
письменной форме, допуская незначительные неточности в утверждениях, трактовках,	
определениях и категориях или незначительное количество ошибок. При этом владеет	
необходимыми умениями и навыками при выполнении практических задач	
Студент знает только основной программный материал, допускает неточности,	
недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в	
устной или письменной форме. При этом недостаточно владеет умениями и навыками	
при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах	
Студент не знает значительной части программного материала. При этом допускает	не зачтено
принципиальные ошибки в доказательствах, в трактовке понятий и категорий,	
проявляет низкую культуру знаний, не владеет основными умениями и навыками при	
выполнении практических задач. Студент отказывается от ответов на дополнительные	
вопросы	

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с
Π/Π	изменений	заседания кафедры	расшифровкой)
		(кафедр), на котором были	заведующего кафедрой
		рассмотрены и одобрены	(заведующих кафедрами)
		изменения и дополнения	